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Interactions of several replicas in the random field Ising model
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Abstract. The replicated field theory of the random field Ising model involves the couplings of replicas
of different indices. The resulting correlation functions involve a superposition of different types of long
distance behaviours. However the n = 0 limit allows one to discuss the renormalization group properties in
spite of this phenomenon. The attraction of pairs of replicas is enhanced under renormalization flow and
no stable fixed point is found. Consequently, an instability occurs in the paramagnetic region, before one
reaches the Curie line, signalling the onset of replica symmetry breaking.

PACS. 75.10.Nr Spin-glass and other random models – 05.50.+q Lattice theory and statistics (Ising,
Potts, etc.)

1 Introduction

The simplest disordered system, the random field Ising
model, remains 25 years after its introduction [1,2], still
far from understood. The initial (d → d − 2) correspon-
dence, between the RFIM in dimension d and the pure sys-
tem in dimension (d−2) ([2–4]), was found to be certainly
wrong in three dimensions, when it was proven that the
RFIM possesses a non-zero critical temperature in three
dimensions [5,6]. Is was then largely believed that non-
perturbative effects spoiled the (d → d − 2) correspon-
dence, although it might be true to all orders in an ex-
pansion in powers of ε = 6− d. However it seems that the
problem is not so much the occurrence of non-perturbative
effects, but simply that the physics of the model did not re-
duce to a paramagnetic-ferromagnetic transition. Numer-
ical experiments in the supposedly paramagnetic phase,
pointing at large time scales before one reached the or-
dering temperature, as well as the theoretical approach
of Mézard and Young [7], led to the idea that the phase
diagram itself had to be reconsidered. Lowering the tem-
perature in the disordered phase, it seems that one meets a
glassy phase, characterized by replica symmetry breaking
(RSB), in a region in which there is no magnetic order-
ing. In a recent article we have briefly examined the field
theory associated with the random field Ising model [8],
within the replica approach, as well as within a Langevin
dynamics [9], which revealed a correspondence between
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singularities in the zero-replica limit and long-time mem-
ory effects.

In the present article we return to the replica approach
and discuss more precisely its renormalization group prop-
erties. We then discuss the instability related to an attrac-
tive interaction between two different replicas.

Let us first summarize the features of the replicated
field theory of the RFIM. It is a φ4 field theory, but with
the following modifications:
(i) there are n fields φa , a = 1, · · · , n and the only sym-
metry is the permutation of the replicas. This allows for
five couplings namely u1

∑
a

φ4
a, u2

∑
ab

φ3
aφb, u3

∑
ab

φ2
aφ

2
b ,

u4

∑
abc

φ2
aφbφc, u5(

n∑
1

φa)4;

(ii) in the n = 0 limit the (bare) propagator at Tc is
given by

Gab(p) =
δab
p2

+
∆

(p2)2
· (1)

The second term results from the averaging over the ran-
dom field h(x) :

〈h(x)h(y)〉 = ∆δ(x− y). (2)

At first sight, the 1/p4 singularity of the propagator could
imply that the upper critical dimension is eight, instead
of six, but it will be argued that it is indeed six because of
the n = 0 limit. Then the renormalization group studies
which were conducted long ago [2–4] dealt only with the
single coupling constant u1, and one ∆/p4 propagator per



468 The European Physical Journal B

loop (contributions with less than one ∆/p4 per loop being
in any case infra-red subdominant). This limitation was
the result of considering the averaging over the random
field of connected correlation functions. However once one
introduces the coupling constants u2, · · · , u5, which in-
volve several replicas, one must also consider contributions
with more than one ∆/p4 per loop. This modifies notably
the conventional renormalization programme, and we shall
carry it in some detail here in the zero replica limit. At
the end we recover the n = 0 limit of the beta-functions
found in [8] and thus confirm its main conclusion, namely
the instability of the dimensional reduction fixed point.

Furthermore we are left with infra-red singular and
attractive contributions to the 4-point function of type
u3, i.e. corresponding to two distinct replicas. They can
give rise to negative eigenvalues in the iteration of the
related Bethe-Salpeter kernel, implying the occurrence of
a glassy phase in the paramagnetic domain, before one
reaches the Curie line [10]. We shall briefly return to this
point at the end.

2 Upper critical dimension

Let us first write the Boltzmann weight for this replicated
field theory:

βH =
∫

ddx

(
1
2

∑
a

[(∇φa)2 + ro(φa)2]− ∆

2

∑
ab

φaφb

+
u1

4!
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a +

u2

3!
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aφb +

u3

8

∑
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φ2
aφ

2
b

+
u4

4

∑
abc

φ2
aφbφc +

u5

4!
(
∑
a

φa)4

)
. (3)

Indeed in [8] it was argued that the standard derivation
of a field theory from the spin model in the presence of a
random field, namely the consideration of the fluctuations
around mean field theory, did yield those five coupling
constants. The corresponding propagator at the critical
temperature is thus simply given by

Gab(p) = lim
n→0

(
δab
p2

+
∆

p2(p2 − n∆)

)
. (4)

In view of this ∆/p4 one does get infrared singularities in
dimensions lower than eight. For instance there is an ob-
vious one-loop contribution to the renormalization of u3

proportional to (∆u1)2 which is singular at low external
momenta as 1/p8−d. However if one considers higher loops
they are either less singular or they vanish with n. Indeed
the diagrams which would be maximally singular in eight
dimensions contain a ∆/p4 on every internal line. There-
fore as soon as the diagram contains any vertex which is
not connected to one or two of the four external lines,
which is bound to happen at most at order five in pertur-
bation theory, it contains at least one free sum over replica
indices, and thus it vanishes with n.

Therefore the singularities that one encounters in these
functions between eight and six dimensions are due to a
finite number of graphs and thus there is no possibility of
anomalous dimensions, which could modify the behavior
given by simple dimensional analysis. This is very much
like, say a six-point function at criticality, in a φ4 theory: it
is singular at low momentum for d < 6 but this singularity
remains canonical down to four dimensions. Here similarly
these singularities remain given by these few graphs down
to d = 6, at which a full renormalization analysis becomes
necessary: the upper critical dimension is six, not eight,
because of the n = 0 limit.

3 Renormalization of the coupling constants

Given the effective Hamiltonian (3), we wish now to
renormalize the four-point functions, corresponding to
the five coupling constants uj(j = 1, · · · , 5), retaining
terms involving one ∆-propagator per loop or more. We
consider the one-particle-irreducible four point function
Γ

(4)
abcd(p1, · · · , p4) and in order to minimize the number of

momenta involved, we choose for simplicity the symmetric
point

pi · pj =
p2

3
(5δij − 2) (5)

compatible with momentum conservation
∑4

1
pi = 0. We

work with a dimensionally regularized theory in dimension
d = 6− ε, and will renormalize by minimal subtraction.

For simplicity let us first keep only u1 and u3 alone
and examine what is happening. The four-point function
of type 1, namely the one which involves a product of three
Kronecker deltas δabδacδad, is given , at one-loop order, by

Γ
(4)
1 (p) = u1 − 3u1

(∆u1)
ε

1
pε

+ · · · (6)

If we multiply it by ∆, one sees that the real coupling
constants which enter into all the diagrams which involve
exactly one ∆ per loop are

gi = ∆ui. (7)

Their (inverse length) dimension is ε = 6−d. Therefore in
a minimal scheme, the relation between the bare g1 and
the dimensionless renormalized gR

1 is, at this order

g1 = µεgR
1

[
1 + 3

gR
1

ε
+O((gR

1 )2)
]
. (8)

Therefore the corresponding contribution to the beta func-
tion is

β1 = −εgR
1 + 3(gR

1 )2 + · · · (9)

For the four-point function of type 3, namely the one
which involves a product of two Kronecker deltas of
the form [Γ (4)

3 ]ab (δadδbc + δacδbd + δabδcd), the situation is
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different since we now meet two kinds of diagrams, those
with one ∆ per loop and those in which the number of
∆’s is equal to the number of loops plus one. On purely
dimensional grounds we may decompose ∆Γ (4)

3 as

∆Γ
(4)
3 (p) = γ3(p) + δ3(p) (10)

with

γ3(p) = g3 − 2
g1g3

ε

1
pε

+ · · ·

δ3(p) =
∆

p2+ε
g2

1 + · · · (11)

(i) Consider first the most infra-red singular contribu-
tion δ3(p). It comes from graphs with one ∆ per loop,
plus one. And its vertices can only be g1’s, since the oc-
currence of one g3 or more (like the insertion of more
∆’s) would entail some free replica summations vanish-
ing with n. Furthermore the structure of those diagrams
in [δ3(p1, p2, p3, p4)]ab is of the form

[Γ (4)
3 ]ab(p1, · · · , p4) = (1− δab)∆2

×
∫

ddq Γ (4)
1 (p1, p2, q, p1 + p2− q)Gab(q)Gab(p1 + p2− q)

× Γ (4)
1 (q, p1 + p2 − q, p3, p4) + permutations, (12)

in which Gab(q) is the renormalized propagator. The in-
tegral over q is convergent, since (1 − δab) selects the
part of the propagator which falls off as 1/q4 (up to log-
arithms). Therefore the renormalization of Γ (4)

1 and of
the propagators is sufficient to make the diagrams con-
tributing to δ3(p) finite. No new renormalization is needed,
and δ3(p1, p2, p3, p4) satisfies a Callan-Symanzik equation
per se.
(ii) γ3(p) comes from graphs with exactly one ∆ per loop.
They are all linear in g3 since any higher power would
again lead to free replica summations vanishing with n.
Therefore the minimal renormalization of g3, defined as

g3 = µεgR
3

[
1 + 2

gR
1

ε
+O((gR

1 )2)
]
. (13)

is sufficient to make γ3(p) finite. The beta-function for g3

follows:

β3 = −εgR
3 + 2gR

1 g
R
3 +O(gR

3 (gR
1 )2). (14)

In general for the theory with the five coupling con-
stants the same pattern governs the renormalization pro-
cedure. The functions Γ (4)

2 and Γ (4)
3 will both involve also

terms with one ∆ per loop, linear in g2 and g3, which lead
to a renormalization of g2 and g3; they have both contri-
butions with one more ∆ which are made finite by the
previous renormalization of Γ (4)

1 . For Γ (4)
4 , one finds first

terms linear in g4 and quadratic in g2 and g3 which come
from one ∆ per loop; they lead to a renormalization of
g4. Then one finds terms proportional to ∆/p2, linear in

g2 and g3, and terms proportional to (∆/p2)2, which are
made finite by the previous renormalization of Γ (4)

1 and of
the propagator. For Γ (4)

5 the situation is again similar ex-
cept that there are now terms up to (∆/p2)3 namely with
k more ∆’s than the number of loops, k = 0, · · · , 3. The
k = 0 terms lead to a renormalization of g5; the other ones
are finite as a consequence of previous renormalizations.
The five beta functions at one-loop order are then [8]:

β1 = −εg1 + 3g2
1

β2 = −εg2 + 3g1(g2 + g3)
β3 = −εg3 + 2g1(g2 + g3)
β4 = −εg4 + 3g1g4 + 4(g2 + g3)2

β5 = −εg5 + 36g4(g2 + g3). (15)

The dimensional reduction fixed point, namely g1 = 1
3ε+

O(ε2) and g2 = · · · = g5 = 0 is unstable. (It is sufficient
to notice that at this fixed point the matrix of derivatives
∂βi
∂gj

has an eigenvalue equal to ∂β3
∂g3

= − 1
3ε.)

4 Field renormalization

At two-loop order a wave function renormalization ap-
pears. However a priori the random field introduces a
privileged direction in the internal space along the unit
vector v = 1√

n
(1, · · · , 1). We have thus to introduce the

longitudinal and transverse components of the fields

φL = φ · v =
1√
n

n∑
a=1

φa (16)

and

φT = φ− φLv. (17)

A priori they are both renormalized by different factors
and we define the renormalized fields through

φL =
√
ZLΦL, φT =

√
ZTΦT, (18)

in which the n fields Φ have finite correlation functions
when ε = (6− d) goes to zero. In terms of these fields the
quadratic terms in the action have the form

βH0 =
∫

ddx
(

1
2

[(∇φL)2 + (∇φT)2]− n∆
2
φ2

L

)
, (19)

i.e. in terms of the renormalized fields

βH0 =
∫

ddx
(

1
2

[ZL(∇ΦL)2 + ZT(∇ΦT)2]− nZL
∆

2
Φ2

L

)
.

(20)

This gives for the renormalized two-point function

Γ
(2)
ab (p) = ZL(p2 − n∆)

1
n

+ ZTp
2(δab −

1
n

)−Σab, (21)
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in which we have used the projectors along the vector v,
the constant matrix whose elements are 1/n, and the pro-
jector transverse to v, the matrix δab−1/n ; Σab contains
all the self-energy diagrams.

From this expression one sees that it is expected that
the wave function renormalization of the longitudinal part
of the propagator ZL renormalizes as well ∆, the vari-
ance of the random field. This is not obvious a priori; in
the appendix an explicit calculation to two-loop order is
given, which shows that to this order ZT = ZL and that
∆ does not acquire an independent renormalization. In
a Langevin dynamics of the same problem [9] the non-
renormalization of ∆ is a natural consequence of the non-
renormalization of the temperature.

5 Instability

A derivation of the Landau theory with the five φ4 cou-
pling constants, was given in [8]. It was shown there that
the coupling constant g3 = u3∆, which couples two dis-
tinct replicas, was attractive. We note that under renor-
malization g3 is pushed further away from the origin. It
is thus natural to examine whether this attractive and
singular interaction (10) may lead to an instability. This
question has been considered in some details by several
authors [10–13]. Here we wish to keep to very simple ar-
guments.

Therefore we now consider whether the Bethe-Salpeter
kernel, for a pair of replicas of different indices, might
develop a vanishing eigenvalue, thereby signaling bound
state formation. Note that couplings other than g3 vanish
with n under iteration in the channel of two (distinct)
replicas. The simplest iterative kernel (besides g3) is an
attractive “bubble”, i.e. a δ3-like contribution followed by
two propagators, i.e.

g̃2
1

1
[(p− q)2]2

∫
ddk

1
(k2)2[(k − q)2]2

· (22)

An instability takes place whenever the spectrum of the
operator

ĥψ = p4ψ(p)− g̃2
1

∫
ddqB(p− q)ψ(q) (23)

has a vanishing eigenvalue, in which

B(p) =
∫

ddk
1

(k2)2[(k − p)2]2
· (24)

In position space this operator is

ĥ = [(∇)2]2 − Cg̃2
1

1
r2d−8

(25)

in which C is a positive constant. The four derivatives may
balance the singularity at the origin of the attractive po-
tential whenever 2d − 8 ≤ 4. In that range the spectrum
consists of bound states and positive energy scattering
states. A simple scaling shows that the binding energies,

in the domain d ≤ 6 are proportional to | g̃1 |
4

6−d . There-
fore whenever | g̃1 |

4
6−d is larger than some critical value

a bound state at zero energy appears, signaling an insta-
bility. Since g̃1 is proportional to ∆, it means that, for
∆ small, there is a small domain of size proportional to
∆4/(6−d) above the Curie line, in which the attraction be-
tween pairs of distinct replicas generate an instability.

Quite generally it can be shown that the ĥ operator of
(23) is, beyond the one-loop approximation, the Jacobian
matrix of the Legendre transform [13] with respect to a
source ∆ab(p)

W (∆ab) + Γ (Gab) =
1
2

∑
p

∑
ab

∆ab(p)Gab(p) (26)

i.e.

ĥab(p; p′) =
∂2Γ

∂Gab(p)∂Gab(p′)
= [Gaa(p)]−1[Gbb(p)]−1δp+p′;0

−Γ (4)
3 (p,−p; p′,−p′). (27)

On the other hand that double derivative has been iden-
tified with the replicon component of the Hessian matrix
[10,13], around the replica symmetric solution for the con-
nected (Gaa = G) and disconnected (or connected through
the random averaging, Gab = G̃) components. Thus the
instability, i.e. negative eigenvalues of ĥ, will force the
emergence of a replica symmetry broken solution [10,11].

To conclude in one sentence, it may be said that the
breakdown of dimensional reduction is not simply that the
ε-expansion needs to be corrected by non-analytic terms,
but follows from a change in the phase diagram itself with
the emergence of a new, glassy, phase.

Appendix: The propagator at two-loop order

The contributions to the self-energy due to the coupling
constant g1 vanish at one-loop in the minimal subtraction
scheme. At two-loop the singular terms of the self-energy
are given by

Σab = g̃2
1[A(p)δab +∆B(p)] (A.1)

with

A(p) =
1
2

∫
ddq1ddq2

1
q4
1

1
q4
2

1
(p+ q1 + q2)2

(A.2)

and

B(p) =
1
6

∫
ddq1ddq2

1
q4
1

1
q4
2

1
(p+ q1 + q2)4

, (A.3)

g̃1 = g1
2πd/2

(2π)dΓ (d/2)
· (A.4)
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A lengthy, but standard, dimensional calculation in which
d = 6− ε, leads to

A = −p
2+2ε

12ε
(1− ε/2)2(1− ε/4)2

(1− 3ε/2)(1− 3ε/4)

×Γ
5(1− ε/2)Γ (1 + ε)
Γ (1− 3ε/2)

= − p2

12ε
+ finite (A.5)

and

B =
p−2ε

12ε
(1− ε/2)2(1− ε/4)2(1 + ε)
(1 + ε/2)(1 + ε/4)(1− ε)

×Γ
5(1− ε/2)Γ (1 + ε)
Γ (1 + ε/2)Γ (1− ε)

=
1

12ε
+ finite. (A.6)

At this order the one-particle irreducible two-point func-
tion is given by

Γ
(2)
ab (p) = ZT(δab −

1
n

)p2 + ZL
1
n

(p2 − n∆)−Σab (A.7)

and thus in the minimal subtraction scheme, we find that,

since A and B diverge with the same ± 1
12ε

ZT = ZL = 1 +
g̃2

1

12ε
+O(g̃3

1), (A.8)

and that indeed ∆ does not require any additional renor-
malization.
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7. M. Mézard, A.P. Young., Europhys. Lett. 18, 653 (1992).
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